Research experiences sharing and insights into publishing in top journals

Baojing GuZhejiang University, China

Who am I?

Education

2002-2006 Zhejiang Univ Biological science Bachelor

2006-2011 Zhejiang Univ Ecology PhD

2007-2008 Alberta Univ Soil science Joint PhD

■ Work experience

• 2011-2016 Zhejiang Univ Economics Post-Doc

2016-2022 Zhejiang Univ Management Assistant Prof

2022- Zhejiang Univ Sustainability Full Professor

Multidisciplinary → Interdisciplinary → Transdisciplinary

Research experiences

2024 Nature climate change	2021 The Innovation	2018 Global Environmental Change	2013 Environmental Science & Technology
2024 Nature Communications	2021 Research	2018 Atmospheric Chemistry and Physics	2013 Science China Earth Sciences
2024 Nature food	2021 One Earth	2018 Journal of Cleaner Production	2013 Atmospheric Environment
2024 Nature food	2021 Research	2018 中国工程科学	2013 Scientific Reports
2024 Nature Food	2021 Environmental Pollution	2017 Environmental Science & Technology	2013 生态学杂志
2024 Nature sustainability	2021 Nature Food	2017 Environmental Research Letters	2013 中国科学:地球科学
2023 Nature	2021 农业资源与环境学报	2017 Ambio	2012 Environmental Science & Technology
2023 Nature	2021 中国生态农业学报	2017 Regional Environmental Change	2012 Nature Climate Change
2023 Environmental Pollution	2020 Scientific Data	2017 Environmental Pollution	2012 Atmospheric Environment
2023 Earth's Future	2020 International Journal of Biometeorology	2017 Environmental Research Letters	2012 Environmental Pollution
2022 Nature Food	2020 Philosophical Transactions of the Royal Society	2017 Ecological Indicators	2012 生态学杂志
2022 Frontiers of Agricultural Science and Engineering	2020 Environmental Science and Pollution Research	2017 土壌学报	2012 生态学杂志
2022 Environmental Science & Technology	2020 Journal of Environmental Management	2017 科技导报	2012 生态学杂志
2022 Carbon Research	2020 Global Change Biology	2016 Scientific Reports	2011 Ecological Economics
2022 Resources, Conservation and Recycling	2020 Nature Communications	2016 Chemosphere	2011 Environmental Modelling & Software
2022 Nature Food	2019 Earth's Future	2016 Environmental Pollution	2011 Environmental Pollution
2022 Nature Food	2019 Environment International	2016 Global Environmental Change	2011 Agriculture, Ecosystems & Environment
2022 Journal of Cleaner Production	2019 Environmental Science and Pollution Research	2016 Scientific Reports	2011 Environmental Research Letters
2022 Science	2019 Nature	2016 Environmental Science and Pollution Research	2011 Renewable and Sustainable Energy Reviews
2022 Journal of Cleaner Production	2019 Atmospheric Reactive Nitrogen in China	2015 Journal of Cleaner Production	2011 Ecological Modelling
2022 Nature Food	2019 Resources, Conservation and Recycling	2015 Proceedings of the National Academy of Scienc	2010 IEEE International Conference on Intelligent Syst
2022 Environmental Science and Pollution Research	2019 Journal of Cleaner Production	2015 Ecological engineering	2010 Ecological Engineering
2022 Agriculture, Ecosystems & Environment	2019 Environmental Science & Technology	2015 Environmental Pollution	2010 Communications in Soil Science and Plant Analy.
2022 农业资源与环境学报	2018 Environmental Pollution	2014 Frontiers in Ecology and the Environment	2010 环境科学学报
2021 The Innovation	2018 Global Change Biology	2014 Ecological Engineering	2009 Ecological Applications
2021 Science	2018 Global Environmental Change	2014 植物营养与肥料学报	2009 Journal of Zhejiang University SCIENCE B
2021 Environmental Pollution	2018 Environmental Pollution	2013 Environmental Monitoring and Assessment	2007 心智与计算
2021 Nature Food	2018 Agriculture, Ecosystems & Environment	2013 Frontiers in Ecology and the Environment	2006 茶叶科学
2021 Nature Sustainability	2018 Proceedings of the National Academy of Scienc	2013 Global Environmental Change	2005 茶叶科学

Confusing in early career

2011	Gu, Baojing; Liu, D	Utilization of waste nitrogen for biofuel prod	Renewable and Sustainable Energy R
2011	Gu, Baojing; Zhu, Y	The role of technology and policy in mitigati	Environmental Research Letters
2011	Chang, Jie; Wu, Xu;	Assessment of net ecosystem services of pla	Ecological Economics
2011	Li, Shiyu; Wu, Xu; X	Quantifying carbon storage for tea plantatio	Agriculture, Ecosystems & Environm
2011	Min, Yong; Gong,	NCNA: Integrated platform for constructing,	Environmental Modelling & Software
2011	Min, Yong; Jin, Xia	Weak indirect effects inherent to nitrogen bi	Ecological Modelling
2011	Wang, Yan; Xu, Ha	Quantification of net carbon flux from plasti	Environmental Pollution
2010	谷保静; 葛滢; 朱根海	人类活动对杭州城乡复合系统陆源氮排海的驱动	环境科学学报
2010	Chang, Jie; Wang,	Responses of a Widespread Weed and an En	Communications in Soil Science and
2010	Xu, Jie; Gu, Baojing;	A cellular automata model for population dy	IEEE International Conference on Int
2010	Zhu, Si-Xi; Ge, Han	Effects of plant diversity on biomass product	Ecological Engineering
2009	Gu, Baojing; Chang	Anthropogenic modification of the nitrogen	Ecological Applications
2009	Wang, Meng; Gu,	Different responses of two Mosla species to	Journal of Zhejiang University SCIEN
2007	常杰: 许杰: 葛滢; 谷	基于元胞自动机的濒危植物明党参种群数量动态	心智与计算
2007	常杰: 许杰: 葛滢; 谷 谷保静; 常杰: 曾建明	基于元胞自动机的濒危植物明党参种群数量动态 设施繁育茶苗适宜光照强度研究	心智与计算 茶叶科学

DNA, tea, endanger species, experiment, simulation,

Start to think

Table 4. Comparison of N budgets between the GHA (this study) and CAP systems (Baker et al. 2001).

Item	GHA	CAP
N input per capita (kg/person)	42	25
N input per hectare (kg/ha)	165	82
Overall N input (Gg/yr)	274.66	98.4
Population (million)	6.51	2.69
Area (km ²)	16 596	12 384
Dry N deposition (kg/ha)	4.7	18.5
Wet N deposition (kg/ha)	17.9	2.4
Percentage of N accumulation	17	21†
N increment of ground water (kg/ha)	4	7
N increment of cropland soil (kg/ha)	36	
N flux to river/total N input (%)	36	1
Riverine N export/total N input (%)	18	3
N flux to atmosphere/total N input (%)	27	49

[†] N flux into landfills is considered as accumulation.

Nitrogen study, stopped due to study abroad

Confusion before graduation

2011	Gu, Baojing; Z	The role of technology and policy in mitigating r	Environmental Research Letters
2011	Gu, Baojing; Li	Utilization of waste nitrogen for biofuel producti	Renewable and Sustainable Energy Reviews
2010	谷保静; 葛滢;	人类活动对杭州城乡复合系统陆源氮排海的驱动分析	环境科学学报
2009	Gu, Baojing; C	Anthropogenic modification of the nitrogen cycli	Ecological Applications

Postdoc, no fund, few publications

New way during postdoc

2013	Gu, Baojing; G	Nitrate in groundwater of China: Sources and dri	Global Environmental Change
2013	Gu, Baojing; L	Nitrogen Footprint in China: Food, Energy, and	Environmental Science & Technology
2013	Gu, BaoJing; Y	Rapid growth of industrial nitrogen fluxes in Chi	Science China Earth Sciences
2013	Gu, Baojing; C	The role of industrial nitrogen in the global nitro	Scientific Reports
2013	谷保静; 杨国福;	中国工业氮通量快速增长的驱动力及其影响	中国科学:地球科学
2012	Gu, Baojing; G	Atmospheric Reactive Nitrogen in China: Source	Environmental Science & Technology
2012	Gu, Baojing; D	The long-term impact of urbanization on nitroge	Environmental Pollution

Bad economics, insistent on nitrogen study

Pain on changing

2015	Gu, Baojing; Ju Integrated reactive nitrogen budgets and future		Proceedings of the National Academy of Scienc	
2015	Zhang, Xiaoho	Urban rivers as hotspots of regional nitrogen pol	Environmental Pollution	
2014	Gu, Baojing; S	Agricultural ammonia emissions contribute to Ch	Frontiers in Ecology and the Environment	

Peter Vitousek

Xiaotang Ju

Bed and sofa

Temporal job and papers

2018	Wang, Hongy	Ammonia emissions from paddy fields are under	Environmental Pollution	
2018	Gu, Baojing; Ju	Cleaning up nitrogen pollution may reduce futur	Global Environmental Change	
2018	Wu, Yiyun; Xi,	Policy distortions, farm size, and the overuse of a	Proceedings of the National Academy of Scienc	
2017	Zhang, Xiumin	Ammonia Emissions May Be Substantially Under	Environmental Science & Technology	
2017	Chen, Binhui;	Land use mediates riverine nitrogen export unde	Environmental Research Letters	
2017	Gu, Baojing; Ju	Nitrogen use efficiencies in Chinese agricultural	Regional Environmental Change	
2017	Shen, Ying; W	Non-linear increase of respiratory diseases and t	Environmental Pollution	
2016	Zhang, Xiumin	Characterization of haze episodes and factors co	Chemosphere	
2016	Wu, Yiyun; Gu,	PM2.5 pollution is substantially affected by amm	Environmental Pollution	
2016	Ju, Xiaotang;	Reducing China's fertilizer use by increasing far	Global Environmental Change	
2016	Zhou, Junyu;	Significant accumulation of nitrate in Chinese se	Scientific Reports	
2016	Gu, Baojing; F	Socioeconomic constraints on the technological	Environmental Science and Pollution Research	

From office to cafetiere, thinking independently, team work

Breaking through in interdisciplinary

2020	Wang, Sitong;	A high-resolution map of reactive nitrogen input	Scientific Data
2020	Gu, Baojing; S	Overcoming socioeconomic barriers to reduce	Environmental Science and Pollution Research
2020	Zhang, Dan; N	Plastic pollution in croplands threatens long-ter	Global Change Biology
2020	Zhang, Xiumin	Societal benefits of halving agricultural ammonia	Nature Communications
2019	Fan, Liangcon	Decreasing farm number benefits the mitigation \dots	Environmental Science and Pollution Research
2019	Gu, Baojing; Z	Four steps to food security for swelling cities	Nature
2019	Zhang, Chuan	Rebuilding the linkage between livestock and cro	Resources, Conservation and Recycling
2019	Ren, Chenche	The impact of farm size on agricultural sustainab	Journal of Cleaner Production
2019	Gu, Baojing; L	Toward a Generic Analytical Framework for Sust	Environmental Science & Technology

Learn to walk your own path

Keep your faith

2021	Gu, Baojing; v	A credit system to solve agricultural nitrogen pol	The Innovation
2021	Gu, Baojing; Z	Abating ammonia is more cost-effective than nit	Science
2021	Wang, Chen;	An empirical model to estimate ammonia emis	Environmental Pollution
2021	Duan, Jiakun;	Consolidation of agricultural land can contribute	Nature Food
2021	Jin, Shuqin; Zh	Decoupling livestock and crop production at the	Nature Sustainability
2021	Sun, Yi; Zhang	Dry Climate Aggravates Riverine Nitrogen Polluti	Environmental Science & Technology
2021	Ren, Chenche	Fertilizer overuse in Chinese smallholders due to I	Journal of Environmental Management
2021	Wang, Mei; H	Human-caused increases in reactive nitrogen bu	The Innovation
2021	Gu, Baojing; C	Soil-Food-Environment-Health Nexus for Sustai	Research
2021	Sun, Yi; Gu, Ba	The Warming Climate Aggravates Atmospheric	Research
2021	Zhang, Xiumin.	Uncertainty of nitrogen budget in China	Environmental Pollution
2021	Wang, Sitong;	Urbanization can benefit agricultural production	Nature Food
2021	谷保静; 段佳堃;	规模化经营推动中国农业绿色发展	农业资源与环境学报
2021	王琛; 张秀明;	中国农畜牧业高分辨率氨排放清单	中国生态农业学报

Accumulation, leadership

Great truths are always simple

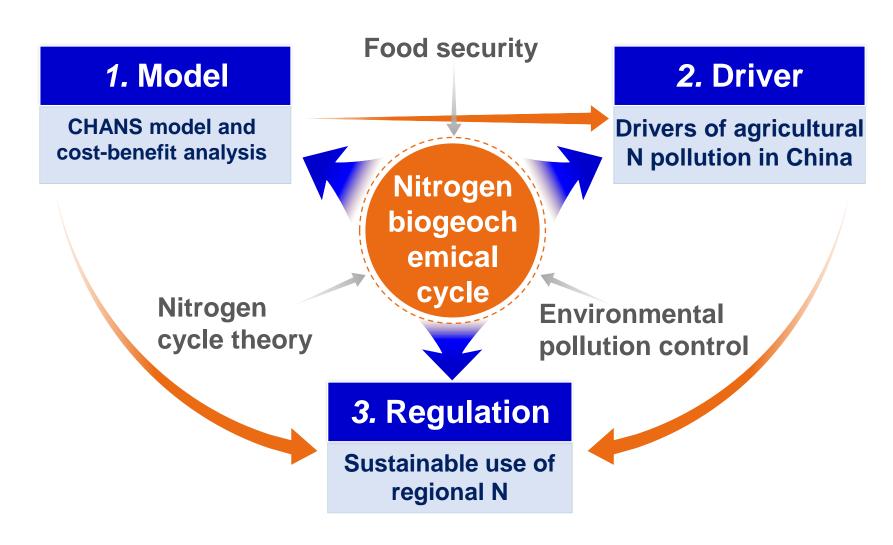
2022	Cheng, Luxi; Z	A 12% switch from monogastric to ruminant liv	Nature Food
2022	Wang, Chen;	Ammonia Emissions from Croplands Decrease wi	Environmental Science & Technology
2022	Zhang, Xiumin.	Costs and benefits of ammonia abatement in A	Resources, Conservation and Recycling
2022	Zhu, Zhiping;	Integrated livestock sector nitrogen pollution ab	Nature Food
2022	Ren, Keyu; Xu,	Optimizing nitrogen fertilizer use for more gra	Journal of Cleaner Production
2022	Gu, Baojing; Z	Particle toxicity's role in air pollution—Response	Science
2022	Wu, Mingqian;.	Pollution controls in Lake Tai with the reductio	Journal of Cleaner Production
2022	Gu, Baojing	Recoupling livestock and crops	Nature Food
2022	Yu, Yingliang;	Reforming smallholder farms to mitigate agricult	Environmental Science and Pollution Research
2022	Ren, Chenche	Socioeconomic barriers of nitrogen managem	Agriculture, Ecosystems & Environment
2022	程露曦; 任琛琛;	气候和社会经济因素对全球畜禽氮排放的驱动研究	农业资源与环境学报

Leading the way

Believe yourself

2024	Zhang, Chuanzhen;.	The role of nitrogen management in achiev	Resources, Conservation and Recyc
2023	Cui, Jinglan; Liu, H	Rice-Animal Co-Culture Systems Benefit Glo	Earth's Future
2023	Chen, Binhui; Ren, .	Driving forces of nitrogen use efficiency in	Environmental Pollution
2023	Gu, Baojing; Zhang	Cost-effective mitigation of nitrogen pollutio	Nature
2023	Ren, Chenchen; Zh	Ageing threatens sustainability of smallholde	Nature
2023	Ren, Chenchen; Zh	Climate change unequally affects nitrogen	Nature Food
2023	Cui, Jinglan; Zhang,	Nitrogen cycles in global croplands altered b	Nature Sustainability
2023	Zhou, Zhenchao; S	Association between particulate matter (PI	The Lancet. Planetary health

Keep working, comprehensive power

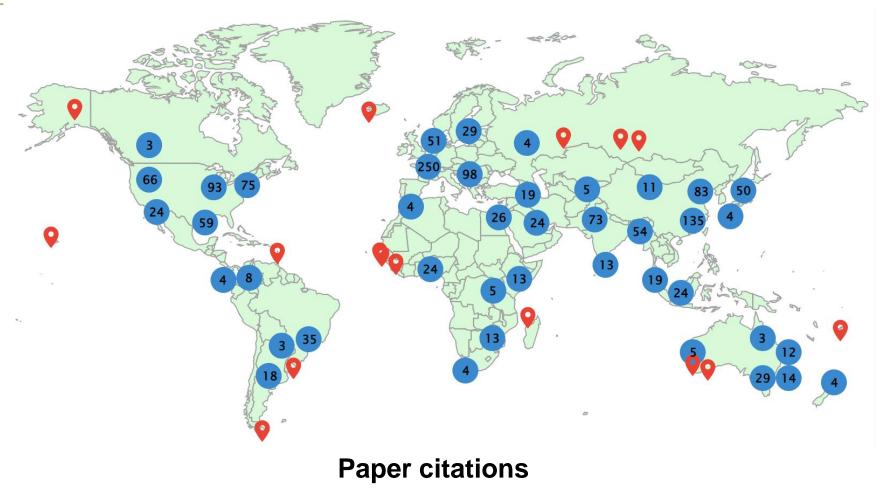

International collaboration for research

- ☐ International Soil Research Alliance (ISRA)
- ☐ UN Environment Programme (UNEP) joint projects, China-Austria joint projects, China-US joint projects, International Nitrogen Management System (INMS)
- □ Deputy Director of the International Nitrogen Initiative (INI) East Asia Center
- □ Director of the Youth Committee of the International Science Council China (ISC-CHINA)
- □ 27 international organizations and collaborating countries, including UNEP, the US, Japan, Germany, Australia, the Netherlands, the UK, Spain, and Kenya
- ✓ Deng et al., *Nat Commun*, 2024, 15, 401.
- ✓ Deng et al., *Nat Food*, 2024, 5, 230–240.
- ✓ Cui et al., *Nat Clim Chang*, 2024, 14, 511-517
- ✓ Duan et al., *Nat Food*, 2024, 5, 378-389

- ✓ Niu et al., *Nat Sustain*, 2024
- ✓ Wang et al., *Nat Food*, 2024
- ✓ Cheng et al., *Nat Food*, 2024

Power of design

The model, driver and regulation of regional nitrogen cycle


Publications

NO.	Year	Journal	Content	NO.	Year	Journal	Content
1	2015	PNAS	CHANS model	11	2022	Nat Food	Animal species
2	2018	PNAS	Farm size effect	12	2022	Nat Food	Recoupling
3	2019	Nature	Diet structure	13	2023	Nature	N credit system
4	2020	Nat Commun	MACC	14	2023	Nature	Ageing effect
5	2021	Science	Cost and benefit	15	2023	Nat Sustain	eCO ₂ on cropland
6	2021	Nat Sustain	Decoupling	16	2023	Nat Food	Climate effect
7	2021	Nat Food	Urbanization, land	17	2024	Nat Climate Change	eCO ₂ on forest
8	2021	Nat Food	Large-scale farm	18	2024	Nat Food	Farming practices
9	2021	Innovation	CHANS lake	19	2024	Nat Food	Sloppy croplands
10	2022	Nat Food	Livestock system	20	2024	Nat Commun	Urbanization, pollution

Publications

Coauthors' institutes

Judinois	montare	
Country/Region	Paper	Ratio
China	102	97.1
Australia	38	36.2
Scotland	34	32.4
England	32	30.5
Usa	30	28.6
Canada	25	23.8
Netherlands	21	20.0
Austria	4	3.8
Norway	4	3.8
Belgium	3	2.9
Japan	3	2.9
Brazil	2	1.9
Denmark	2	1.9
Germany	2	1.9
New Zealand	2	1.9
Argentina	1	1.0
Italy	1	1.0
Poland	1	1.0
South Africa	1	1.0
Spain	1	1.0
Uganda	1	1.0

9 roles

- 1. A good paper requires good research.
- 2. Good research starts with great ideas.
- 3. Ideas come from literatures, practices, and critical thinking.
- 4. Once had an idea, you need a strong execution power.
- 5. The execution process requires imagination.
- 6. Once finished a paper, aesthetic judgment is needed.
- 7. After submission, you need a strong heart.
- 8. Occasionally, a bit of luck is also important.
- 9. Publishing good papers can further enhance your research.

Thank you!

Baojing Gu, College of Environmental and Resource Science, Zhejiang University, Email: bjgu@zju.edu.cn webpage: http://person.zju.edu.cn/bjgu

Research interests: Carbon and nitrogen cycles, resource and environmental management, global change and sustainable development

NSFC Excellent/Distinguished Youth Fund Project, National Key R&D Project NSFC-UNEP International Cooperation Key Project, Australian Research Council Project United Nations Environment Programme, Zhejiang University Rural Household Survey

