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What are foundation models?

The Stanford Institute for Human-Centered Atrtificial
Intelligence's (HAI) for Research on Foundation

Models (CRFM) coined the term "foundation model"

in August 2021 to mean "any model that is trained
on broad data (generally using self-supervision at
scale) that can be adapted (e.g., fine-tuned) to a
wide range of downstream tasks
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What are Geo-foundation models?
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Questions to be addressed In this
presentation

* To what extent do translated textual descriptions preserve the
Study 1 s . o A
similarity observed in the corresponding images”

Study 2 % How to design a flexible SAM framework for segmenting multimodal
udy remote sensing data?

Studv 3 * How to develop an improved Visual-Language Model for enhanced
y remote sensing image comprehension?

¢ How can multimodal foundation models be adapted into a unified
Study 4 forecasting framework to enhance predictive analytics of urban
dynamics in complex environments?




Understanding remote sensing imagery like reading a text
document

Domain transition
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Case study area

<5 P Upper Left: 84°32'15"W 33°52'N
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Atlanta,
Georgia, U.S.
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The relationship between cosine similarity of caption embeddings, i.e., Cos(V; < V) and cosine
similarity of the corresponding image embeddings, i.e., Cos(Vp — V;,).
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Results

* Only a moderate cross-modal match overall.
Across the 11,270 Atlanta image patches, the correlation between image-space cosine similarity and
caption-space cosine similarity never exceeds r = 0.52. Kendall's T shows the same pattern (0.27 —
0.35). This indicates that the textual descriptions retain some—»but far from all—of the visual similarity
structure.

“ Model choice matters.
BLIP captions preserve the image similarity best, while mPLUG performs the worst; OFA and X-VLM sit
in between. The gap (Ar = 0.15) confirms that preservation quality is model-dependent.
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» Preservation is object-specific.

When captions mention cars, visual-textual similarity strengthens markedly (e.g., mPLUG r = 0.563; X-
VLM r = 0.517). In contrast, scenes dominated by rivers show almost no correlation (mPLUG r = 0.082;
BLIP r = 0.097). Built features such as roads and buildings fall in between. Thus, the extent of
preservation hinges on which urban element anchors the caption.
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» Similarity curves are non-linear and “wavy.”

LOWESS plots reveal a fluctuating relationship: high-similarity image pairs are sometimes matched by
high-similarity captions, but mid-range image similarities often scatter widely in caption space. This
suggests that linguistic translation injects additional semantic nuance not present, or not weighted
equally, in the raw pixels.
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Understanding remote sensing imagery like reading a text document: What | % (T[T Cos(Vp
can remote sensing image captioning offer?
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network
(ResNet)

ARTICLEINFO ABSTRACT

Keywords: Remote sensing imagery offers intricate and nuanced data, emphasizing the need for a profound understanding of
Remote sensing the relationships among varied geographical elements and events. In this study, we explore the transitions from
Domain transfer the image domain to the text domain by employing four state-of-the-art image captioning algorithms, i.e., BLIP,
Image caption mPLUG, OFA, and X-VLM. Specifically, we investigate (1) the stability of these image captioning algorithms for .
remote sensing image captioning, (2) the preservation of similarity between images and their corresponding the airport. S T f
captions, and (3) the characteristics of their caption embedding spaces. The results suggest a moderate consis- LSS VTt Tt ' entence Transformer
tency across generated captions from different image captioning models, with observable variations contingent
upon the urban entities presented. In addition, a dynamic relationship emerges between image space and the
corresponding caption space, evidenced by their fluctuated correlation coefficient. Most importantly, patterns
within the caption embedding space align with the observed land cover and land use in the image patches,
reaffirming the potential of our pilot work as an impactful analytical approach in future remote sensing analytics.
We advocate that integrating image captioning techniques with remote sensing imagery paves the way for an
innovative data extraction and interpretation approach with diverse applications.
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Remote sensing imagery, as a sophisticated and versatile resource,
plays a critical role across a multitude of sectors due to its capacity to
generate expansive and real-time data from a remote perspective. This
technology finds its application in numerous fields, such as agriculture
(Khanal et al., 2020), meteorology (Tomlinson et al., 2011), environ-
mental conservation (Turner et al., 2003), and urban planning (Netz-
band et al., 2007), among others. The comprehension of remote sensing
imagery has witnessed substantial progression via the inception of
cutting-edge techniques and methodologies. The advancement in
Geographic Information Systems (GIS) has facilitated superior geo-
spatial analysis and visual representation of remote sensing data.
Further, the adoption of Machine Learning (ML) and Artificial Intelli-
gence (AI) has been escalated to augment the interpretation and

to discern patterns and features in images, thereby bolstering object
recognition and classification (Song et al., 2019; Ren et al., 2018). The
ceaseless evolution of these methodologies is instrumental in deriving
more insightful data from remote sensing imagery, catalyzing ad-
vancements across diverse domains.

As widely recognized in the field, remote sensing imagery presents
intricate and diversified data, requiring extensive comprehension of the
interactions among various geographical aspects and phenomena
(Dronova, 2015). Such complexity often surpasses the capacity of
traditional image processing methods and even transcends the capabil-
ities of advanced image understanding mechanisms. Moreover, nowa-
days a huge volume of satellite images is increasingly generated every
day, especially with more and more commercial companies launching




Revisiting SAM-based semantic segmentation models

Notable efforts for RS land use and land cover segmentation:

** RSPrompter (Chen et al., 2024): uses an anchor-and-query-based prompt generator and multi-
scale feature enhancer to extract features from the SAM encoder, producing distinct segmentation
results

s CWSAM (Pu et al., 2024): fine-tunes the SAM encoder with lightweight adapters for SAR imagery,
adding a classwise mask decoder with a class prediction head for precise pixel-level land cover
classification

Notable multimodal efforts:

* RingMo-SAM (Yan et al., 2023): adapts SAM for multimodal RS data, using an
embedding feature prompt encoder and multi-box prompts.

s SAM-MCD (Ding et al., 2024). leverages SAM'’s zero-shot transfer to generate segmentation maps for
optical imagery and uses OpenStreetMap (OSM) data with a connected component labeling algorithm to
identify LULC changes

SAM-based multimodal models still struggle with
adaptability and accuracy issues due to information
Interference between modalities




Challenges in applying SAM-based multimodal semantic segmentation
models to high-precision LULC classification

(a) Struggling to adapt to different types of RS imagery across various datasets
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FlexiSAM: A flexible SAM-based semantic segmentation model for land cover
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FlexiSAM: A flexible SAM-based semantic segmentation model for land cover
classification

Key modules:1) Multimodal Feature Enhancement Module (MFEM)

Cleans and amplifies each input modality with domain-specific filters (e.g., SAR speckle
suppression, HSI PCA), producing noise-reduced, standardized feature maps that give the
downstream network a solid, modality-aware starting point

2) Dynamic Multimodal Feature Fusion Unit (DMMFU)

Uses lightweight multi-head attention to learn per-scene confidence scores for every
auxiliary modality, then fuses the most informative channels with RGB, so
complementary signals are emphasized and irrelevant noise is suppressed.

3) Dynamic Attention and Context Aggregation Mixer

(DfRefirids the fused tensor through multi-scale convolutional kernels and context-aware
attention, jointly modeling local details and broad spatial relationships to deliver
semantically richer, scale-robust features.

4) Semantic Cross-Modal Integration Module (SCMII)

Applies a stack of shared MLP layers to align heterogeneous embeddings, blending
auxiliary and RGB streams into a single, semantically consistent representation that the
SAM encoder can ingest without architectural changes.




Table 1

IQuantitative comparison of multiple SOTA semantic segmentation models on the Korea dataset,lincludimg RGB and SAR modalities. Models are evaluated on land cover categories:
building, road, farmland, water, and greenery. 'N/A’ indicates models not adaptable to the modalities in this dataset. FlexiSAM* indicates accuracies obtained using the LuoJiaNET
framework, while all other methods are based on PyTorch. For consistent comparison in PyTorch, bold values indicate the highest accuracy, and underlined values represent the
second-highest.

Method Modal Category Accuracy mloU (%) mF1 (%) 0A (%)
FI eX I S AM . building, road, farmland, water, greenery
: UNetFormer (Wang et al., 2022c) RGB 95.43, 78.57, 92.11, 99.16, 90.57, 81.61 80.87 88.69 93.10
Tor SwinT-V2 (Liu et al., 2022a) RGB 95.03, 84.20, 91.81, 99.17, 90.80, 86.24 82.54 93.36 89.95
yex I § M* . Segformer (Xie et al., 2021) RGB 97.01, 86.58, 95.49, 99.19, 94.25, 89.90 87.56 93.08 95.70
. SOLC (Li et al., 2022b) RGB+SAR 94.70, 89.15, 93.90, 99.15, 93.72, 89.48 85.61 90.95 94.64
. MFT (Roy et al., 2023) HSI+DSM N/A N/A N/A N/A
LU OJ|aN ET(Zhang et al . 2023) FTransUNet (Ma et al., 2024b) RGB+DSM N/A N/A N/A N/A
! UisNet (Fan et al., 2022) RGB+SAR 95.26, 87.02, 96.64, 99.45, 96.90, 63.55 82.49 89.60 93.31
MSSeg (Wang et al., 2024a) RGB+SAR 97.90, 88.01, 96.63, 99.40, 96.56, 92.37 90.26 94.67 94.88
CWSAM (Pu et al., 2024) SAR 95.82, 74.73, 93.68, 98.87, 93.61, 86.51 82.09 89.33 94.10
RSAM-Seg (Zhang et al., 2024e) RGB 96.46, 83.30, 95.87, 99.47, 95.72, 90.42 86.95 92.62 95.66
SAM-RS (Ma et al., 2024a) RGB 97.08, 88.36, 96.33, 99.34, 93.42, 89.62 87.92 93.28 96.01
SEFM (Shi et al., 2023) RGB+SAR 97.65, 86.44, 96.83, 99.49, 96.56, 93.05 89.97 94.49 96.78
CMAA (Shi et al., 2023) RGB+SAR 97.30, 87.45, 96.94, 99.49, 96.33, 91.78 89.47 94.19 96.67
FlexiSAM (Ours) RGB+SAR 98.13, 91.13, 97.42, 99.55, 97.36, 93.73 91.84 96.08 97.53

FlexiSAM* (Ours) RGB+SAR 98.40, 91.80, 97.80, 99.65, 97.70, 94.20 92.25 96.45 97.90

Table 2
|Quantitative comparison of multiple SOTA semantic segmentation models on the Houston2018 dataset, |including RGB, HSI, and DSM modalities. Models are evaluated on land cover categories: Healthy Grass (HG), Stressed Grass (SG),
Artificial Turf (AT), Evergreen Trees (ET), Deciduous Trees (DT), Bare Earth (BE), Water (W), Residential Buildings (RB), Non-Residential Buildings (NR), Roads (R), Sidewalks (S), Crosswalks (CW), Major Thoroughfares (MT), Highways
(H), Railways (RW), Paved Parking Lots (PP), Unpaved Parking Lots (UP), Cars (C), Trains (T), and Stadium Seats (SS). 'N/A’ indicates models not adaptable to the modalities in this dataset. FlexiSAM* indicates accuracies obtained
using the LuoJiaNET framework, while all other methods are based on PyTorch. For consistent comparison in PyTorch, bold values indicate the highest accuracy, and underlined values represent the second-highest.
Method Modal Category Accuracy mloU mF1 OA
(%) (%) (%)

HG, SG, AT, ET, DT, BE, W, RB, NR, R, S, CW, MT, H, RW, PP, UP, C, T, SS

UNetFormer (Wang et al., 2022¢) RGB 82.65, 87.28, 98.03, 93.08, 90.93, 98.28, 99.25, 95.58, 94.96, 87.88, 85.72, 62.87, 88.74, 91.10, 90.73, 91.07, 90.85, 89.44, 94.77, 96.56 75.45 85.15 92.09
SwinT-V2 (Liu et al., 2022a) RGB 75.09, 89.50, 99.45, 93.96, 86.50, 97.51, 84.32, 98.50, 97.25, 87.06, 83.06, 48.44, 92.57, 97.54, 86.94, 81.97, 94.96, 73.88, 91.24, 99.42 77.61 85.58 92.92
Segformer (Xie et al., 2021) RGB 79.56, 90.29, 95.34, 95.18, 88.44, 92.23, 96.47, 97.04, 97.31, 86.06, 82.53, 51.95, 90.55, 95.81, 91.50, 94.03, 91.47, 92.80, 92.70, 98.94 78.73 86.58 93.44
SOLC (Li et al., 2022b) RGB+SAR N/A N/A N/A N/A
MFT (Roy et al., 2023) HSI+DSM 83.23, 91.32, 95.97, 95.97, 92.45, 97.49, 96.57, 96.78, 97.55, 89.83, 88.67, 64.94, 91.88, 95.64, 94.96, 94.32, 93.03, 93.65, 95.40, 97.32 82.43 89.50 94.69
FTransUNet (Ma et al., 2024b)  RGB+DSM N/A N/A N/A N/A
UisNet (Fan et al., 2022) RGB+HSI+DSM 88.93, 95.11, 95.44, 97.78, 96.37, 99.28, 99.41, 99.37, 99.10, 93.46, 92.70, 68.16, 96.06, 98.78, 98.62, 99.24, 97.71, 99.02, 99.34, 98.86 85.7 90.05 97.34
MSSeg (Wang et al., 2024a) RGB+HSI4+DSM 85.45, 93.89, 99.82, 97.22, 95.42, 99.74, 100.00, 99.10, 98.91, 92.67, 91.97, 64.62, 94.29, 97.55, 99.34, 98.67, 99.68, 98.37, 99.42, 98.75  86.91 91.42 96.76
CWSAM (Pu et al., 2024) SAR N/A N/A N/A N/A
RSAM-Seg (Zhang et al., 2024¢) RGB 79.52, 90.37, 93.63, 95.36, 87.66, 91.67, 96.16, 96.85, 97.29, 86.01, 82.75, 51.70, 90.56, 95.67, 92.65, 93.96, 90.50, 92.76, 94.16, 98.41 78.71 86.55 93.43
SAM-RS (Ma et al., 2024a) RGB 84.41, 92.73, 96.68, 96.52, 93.04, 95.06, 98.54, 98.42, 98.04, 90.92, 89.33, 63.83, 92.91, 96.10, 94.46, 95.27, 94.75, 93.49, 95.74, 98.40 83.71 90.02 95.39
SEFM (Shi et al., 2023) RGB-+HSI+DSM 80.64, 92.20, 99.94, 96.82, 92.15, 99.53, 92.08, 99.55, 98.63, 91.85, 90.24, 58.25, 95.04, 98.62, 94.60, 94.08, 99.45, 91.31, 96.55, 99.72  86.87

CMAA (Shi et al., 2023) RGB+HSI+DSM 90.08, 96.27, 99.68, 99.32, 98.18, 99.99, 100.00, 99.76, 99.62, 97.17, 97.43, 80.14, 97.33, 99.15, 99.69, 99.66, 99.98, 99.25, 99.67, 99.00 88.46

FlexiSAM (Ours) RGB+HSI+DSM 89.68, 96.18, 99.47, 99.32, 98.69, 99.83, 99.63, 99.85, 99.64, 98.00, 97.34, 80.85, 97.79, 99.47, 99.75, 99.77, 99.72, 99.64, 99.80, 99.91 89.23 93.94 98.73
FlexiSAM* (Ours) RGB+HSI+DSM 89.70, 96.25, 99.50, 99.35, 98.75, 99.80, 99.70, 99.85, 99.65, 97.95, 97.45, 80.75, 97.85, 99.48, 99.70, 99.78, 99.73, 99.68, 99.81, 99.92 89.40 94.10 98.85
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Fig. 8. Visualization results on the Korea dataset for multiple SOTA semantic segmentation models: (a) RGB modality, (b) SAR modality, (c) UNetFormer (Wang et al., 2022c),
(d) SwinT-V2 (Liu et al., 2022a), (e) Segformer (Xie et al., 2021), (f) SOLC (Li et al., 2022b), (g) UisNet (Fan et al., 2022), (h) MSSeg (Wang et al., 2024a), (i) CWSAM (Pu et al.,

2024), (j) RSAM-Seg (Zhang et al., 2024e), (k) SAM-RS (Ma et al., 2024a), () SEFM (Shi et al., 2023), (m) CMAA (Shi et al., 2023),|(n) FlexiSAM (ours), (o) FlexiSAM* (ours),
and (p) Ground truth.
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FlexiSAM: A flexible SAM-based semantic segmentation model for land cover | |&&
classification using high-resolution multimodal remote sensing imagery Houston2018 Mini-FLAIR
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ARTICLE INFO ABSTRAGT (b) Insufficient consideration of (c) The domain gap limits SAM’s
Keywords: Fine-grained land use and land cover (LULC) classification using high-resolution remote sensing (RS) imagery semantic interference effectiVCneSS fOI' LULC
Land use and land cover (LULC) classification is fundamental to scientific research. Recently, the Segment Anything Model (SAM) has emerged as a
Multimodal remote sensing (RS) imagery major advance in deep learning-based LULC classification due to its robust ion and lization 3
Semantic segmentation model capabilities. However, existing SAM-based models p i rely on singl. dal inputs (e.g., optical RGB ‘ e

Segment anything model (SAM) or SAR), limiting their ability to fully capture the complex spatial and spectral characteristics of RS imagery.

Although multimodal RS data can provide complementary information to enhance classification accuracy, inte-
grating multiple modalities into SAM presents significant including modality ptation, semantic
interference, and domain gaps. Building on this, we propose FlexiSAM, a SAM-based multimodal semantic
segmentation model designed to overcome these challenges. FlexiSAM uses RGB as the primary modality
while seamlessly integrating auxiliary RS modalities through a modular pipeline. Key innovations include the
Dynamic Multimodal Feature Fusion Unit (DMMFU) and Dynamic Attention and the Context Aggregation Mixer
(DACAM) for robust cross-modal feature fusion and refinement, and the Semantic Cross-Modal Integration
Module (SCMII) for mitigating modality-induced feature misalignments and ensuring coherent multimodal
integration. These are then processed by the adapted SAM encoder, enhanced with a lightweight adapter
tailored for RS data, and followed by a dedicated decoder that produces precise classification outputs. Extensive
experiments on the Korea, Houston2018, and Mini-FLAIR datasets, conducted using LuoJiaNET for core
evaluations and PyTorch for cross-method comparisons, demonstrate FlexiSAM’s effectiveness and superiority,
surpassing state-of-the-art models by at least 1.58% on Korea, 0.77% on Houston2018, and 1.14% in mloU.
Importantly, the LuoJiaNET framework delivers higher accuracy and efficiency compared to PyTorch. FlexiSAM
also demonstrates strong adaptability and robustness across diverse RS modalities, establishing it as a versatile
solution for fine-grained LULC classification.

N atura

Different distributions

1. Introduction interpretation, fully supervised single-modal semantic segmentation
models have excelled in LULC classification due to their robust end-

Fine-grained land use and land cover (LULC) classification, which to-end feature extraction and representation capabilities (Diakogiannis
systematically identifies and quantifies how Earth’s surface is utilized et al., 2020; Gao et al., 2021; He et al., 2022b). Notable models
and covered, is critical in fields such as climate change research, urban include CNN-based architectures like UNet (Ronneberger et al., 2015)

planning, and disaster management FWan?; et al., 12023, 2922b; L3 and DeepLabV3Plus (Chen et al., 2018), ViT-based models such as
et al.,, 2024a; Vali et al, 2020). In intelligent remote sensing (RS)
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bicycle on a road with a red car in the
background. The person is wearing a
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She has a backpack on her back and is
pedaling with their feet on the pedals. The
road is lined with trees on both sides and
there is another person riding another
bicycle in front of her. The date
"9/22/2023" is visible in the bottom right
corner of the image.
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A Hierarchically Aligned Visual-Language Model for
Enhanced Remote Sensing Image Comprehension

Meet Aquila

s Aquila-CCN Vision Encoder (ConvNeXt-CLIP

baqkq\ﬂcr)]set)RSVLMs rely on ViT-based CLIP encoders that struggle with very large inputs. Aquila-CCN
keeps convolutional inductive biases and is pre-trained for high-resolution imagery, so it natively
handles multi-kilometre scenes without tiling or heavy down-sampling.

*» Hierarchical Spatial Feature Integration (SFI)

« Traditional models flatten visual tokens and bolt them onto an LLM through a single linear or Q-
Former layer (“shallow alignment”). SFI repeatedly aggregates multi-scale feature maps with
learnable queries, preserving spatial structure and fusing details from object to landscape scale
before any language interaction.

¢ Multi-layer Deep Alignment (MDA) inside the LLM

» Instead of passing visual features to the LLM once, Aquila injects SFI outputs at several
transformer layers, allowing iterative cross-modal attention and reasoning. This deep fusion
yields stronger grounding of spatial relationships and markedly better performance on remote-
sensing captioning and VQA tasks.
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Table 2. Hyperparameters for alignment pretraining and instruction finetuning.

Table 3. Performance of VLMs on remote sensing caption datasets

Hyperparameters Alignment pretraining Instruction finetuning

Visual encoder CLIP-ConvNeXt-XXL CLIP-ConvNeXt-XXL
Textual encoder Llama-3-8b Llama-3-8b
Datasets IM 1.8M

Epoch 1 1
GPUs 4 NVIDIA AB00 4 NVIDIA A800
Training time 70h 120h
Input resolution 10242 10242
Image token length 1024 1024
Global batch size 32 32
Learning rate le-3 4e-5
Learning rate scheduler Cosine Cosine
Optimizer AdamW AdamW
Adam (0.9, 0.95) (0.9, 0.95)
Weight decay 0.05 0.1
Warmup ratio 0.06 0.03
Lora rank -- 64
Lora alpha -- 16

Lora drop

Model RSICD Sydney UucM FIT RSFG-Captions
LLaVAL.5-7B 55.26 52.21 57.58 15.38
GeoChat 45.86 39.79 44.09 8.79
RSGPT 70.32 82.26 86.12 -
SkySenseGPT -- -- -- 27.31
Aquila 74.6 83.42 88.25 35.08

Table 4. Performance of VLMs on remote sensing visual question answer datasets

Model RSVQA-LR  RSVQA-HR  FIT RSFG-VQA
LLaVAL.5-7B 65.86 53.99 58.59
GeoChat 91.81 70.82 53.47
RSGPT 92.29 92.15 -
LHRS-Bot 89.19 92.55 -
H’RSVLM 89.12 74.35 -
SkyEyeGPT 88.23 86.87 -
SkySenseGPT 92.69 82.56 79.76
Aquila 92.72 92.64 83.87




Visual input

examples
User How many planes do this image contain? Where is the power tower located in the image?
@ g A fully visible large lattice tower is on the bottom right part of the
image.
User Describe the scene. Describe the scene.

The scene depicts an airport, with a grassy area and a runway in the
background. Multiple airplanes can be seen in the image. One
airplane is located in the lower right corner, partially visible, with
another airplane parked beside it. Facing to the right, a third airplane
is parked next to the second airplane. Additionally, a fourth airplane is
situated in the upper right corner of the image. These airplanes are
neatly lined up in a row, each parked alongside another airplane. The
airplanes are arranged neatly, creating a sense of order in the scene.

In the forest scene, there is a lattice tower standing tall among the
trees. The lattice tower is located towards the right side of the image,
slightly closer to the foreground. It is positioned near the edge of the
forest, overlooking the trees and the power line that runs through the
area. The lattice tower is fully visible in the image, with all its
intricate details clearly visible. The power line extends from the lattice
tower, disappearing into the distance. The tower stands out against the
backdrop of the dense forest, adding a man-made element to the
natural landscape.

What colors are on this airplane?

The airplanes are white in color.

What is the direction of the power lines in the image?

The power lines appear to extend from the bottom left to the top right.

VQA demonstrations of the proposal Aquila




Questions 1

How can multimodal foundation models be adapted to improve
predictive analytics in complex urban environments?

Questions 2

Can we develop a unified forecasting framework that fuses
very-high-resolution remote-sensing imagery with plug-and-
play auxiliary datasets for predicting urban dynamics?
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Variable

Primary data set & provider

Native spatial / temporal
resolution

How it was prepared for the
model

Notes

(Input
Satellite impgery

(Prediction

GDPagrltSgvel economic
output)

Housing price

Ride-share demand

Traffic crashes
Crimes

Municipal service demand

National Agriculture Imagery
Program (NAIP) four-band (RGB +
NIR) mosaic for the Greater
Chicago Area, downloaded
through Google Earth Engine

“Global 1 km x 1 km gridded
revised real GDP” data set (1992—
2019) constructed from
DMSP/OLS & VIIRS night-time
lights, Chen et al. 2022

Official “House Prices” tables on
the City of Chicago Data Portal
(2019 transactions)

Transportation Network Provider
(TNP) & taxi trip logs published by
the City of Chicago (2019)

Chicago “Traffic Crashes —
Crashes” record set (2019 subset)

Chicago “Crimes — 2001-Present”
database (records for 2019)

Chicago 311 Service Request
collections (2019)

0.6 m pixel size; acquisition:
September 2019

1 km grid; annual snapshots; 2019
layer selected

Point records of individual sales;
timestamps to the day

Point pick-up / drop-off events with
exact times

Point incidents with precise
lat/long and timestamp

Point incidents; offence codes &
times

Point requests with service
category

Tiled into 512 x 512-pixel chips (=
307 m x 307 m on the ground)
before being fed to the
representation encoder

Values interpolated from the 1 km
raster onto the 500 m x 500 m
analysis grid

Median sale price calculated for
each 500 m grid cell via spatial

join

Trip counts aggregated to the 500

m grid (separately for pick-ups and

drop-offs)

Total crash count per 500 m cell

Incident count per 500 m grid cell

Request count per 500 m grid cell

Provides the visual backbone from
which every region-level
embedding and caption is derived

Captures broad economic intensity
independent of local survey data

Reflects real-estate market value
at neighbourhood scale

Serves as a proxy for short-
distance human mobility

Captures safety-related road
conditions

Indicator of social disorder &
policing demand

Represents resident-reported
infrastructure & maintenance
needs

A city-wide 500 m x 500 m fishnet was generated; all non-imagery variables were spatially joined to this grid and,
where necessary, interpolated so that every raster/tile and every structured attribute




Best regional encoding method among the three

RZ
Model
GDP Housing Price Ride-share Traffic Crashes Crimes Services

Panel 1 Region-based Encoding Methods

1 Tile2Vec 0.484/0.320 0.504/0.341 0.551/0.498 0.427/0.318 0.427/0.284 0.675/0.645

2 SatMAE™™ 0.616/0.403 0.757/0.558 0.719/0.550 0.689/0.425 0.608/0.473 0.836/0.769

3 DHM 0.721/0.493 0.923/0.326 0.668/0.571 0.813/0.281 0.712/0.121 0.856/0.212
Panel 2 Traditional Dependency Modeling + Graph-based Methods

4 SatMAE*" + GAT (grid) 0.700/0.435 0.882/0.570 0.817/0.501 0.539/0.465 0.594/0.521 0.787/0.745

5 SatMAE"" + GAT (sparse) 0.754/0.561 0.815/0.431 0.781/0.694 0.672/0.325 0.419/0.211 0.891/0.726
Panel 3 Our Framework

6 SatMAE* "+ GAT 0.801/0.612 0.787/0.641 0.825/0.771 0.773/0.453 0.619/0.520 0.832/0.797

7 SatMAE™ " + GeoTransformer 0.811/0.783 0.923/0.912 0.920/0.901 0.716/0.638 0.669/0.597 0.891/0.824

Table 2: Predictive performance of baselines and our framework. Each entry is represented as training/testing performance.

» GAT = Graph Attention Network

» DHM = Deep Hybrid
Model




R2
Model Variant
GDP Ride-share = Crimes

Encoder Compatibility

Tile2Vec + GeoTransformer  0.65/0.55  0.72/0.69  0.60/0.53

SatMAE™*+ GeoTransformer 0.81/0.78  0.92/0.90  0.67/0.59

DHM + GeoTransformer 0.87/0.83  0.91/0.89  0.85/0.34
Decoder Compatibility

SatMAE**+ GAT 0.80/0.61 0.83/0.77  0.62/0.52

SatMAE™*+ GeoTransformer 0.81/0.78  0.92/0.90  0.67/0.60
Table 3: Framework compatibility experiments on three rep-
resentative tasks. Each entry shows training/testing perfor-
mance.

« GeoTransformer’s architecture is genuinely plug-and-play—you
can swap in any tested encoder or decoder module and still
obtain strong, comparable accuracy across tasks.

* Using an LLM-guided, task-aware neighbour-retrieval
strategy consistently delivers the highest prediction accuracy,
decisively outperforming purely data-driven or random retrieval
baselines.

% The model’s top performance depends on applying both spatial-
distance and information-entropy weights in the attention
layer; omitting either weight causes a clear drop in predictive

Table 4: Ablation results of retrieval mechanisms (R?). All
models use DHM encoder and GeoTransformer decoder.

Retrieval Method GDP Ride-share Crimes
Random Retrieval 0.66/0.63 0.72/0.70 0.60/0.45
Similarity-based Retrieval 0.75/0.69 0.88/0.79 0.63/0.51
Sparse Retrieval 0.79/0.72 0.84/0.81 0.70/0.46
Task-aware Retrieval (Ours) 0.81/0.78 0.92/0.90 0.67/0.56

Table 5: Ablation results of geospatial attention weighting
(R?). All models use DHM encoder and task-aware retrieval.

Weighting Variant GDP  Ride-share Crimes
No Spatial Weight (Ws off)  0.77/0.75 0.90/0.84 0.60/0.59
No Entropy Weight (Wg off)  0.80/0.75 0.88/0.87 0.63/0.56
No Weighting 0.70/0.66 0.82/0.73 0.59/0.52
Full GeoTransformer (Ours)  0.81/0.78 0.92/0.90 0.67/0.60

_____power
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Abstract

Urban forecasting has increasingly benefited from high-dimensional
spatial data through two primary approaches: graph-based meth-
ods which rely on predefined spatial structures, and region-based
methods that focus on learning expressive urban representations.
Although these methods have laid a strong foundation, they ei-
ther rely heavily on structured spatial data, struggle to adapt to
task-specific dependencies, or fail to integrate holistic urban con-
text. Moreover, no existing framework systematically integrates
these two paradigms and overcome their respective limitations.
To address this gap, we propose a novel, unified framework for
high-dimensional urban forecasting, composed of three key compo-
nents: (1) the Urban Region Representation Module that organizes
latent embeddings and semantic descriptions for each region, (2)
the Task-aware Dependency Retrieval module that selects relevant
context regions based on natural language prompts, and (3) the
Prediction Module, exemplified by our proposed GeoTransformer
architecture, which adopts a novel geospatial attention mechanism
to incorporate spatial proximity and information entropy as priors.
Our framework is modular and supports diverse representation
methods and forecasting models, and can operate even with mini-
mal input. Quantitative experiments and qualitative analysis across
six urban forecasting tasks demonstrate strong task generalization
and validate the framework’s effectiveness.

CCS Concepts

» Computing methodologies — Artificial intelligence; - In-
formation systems — Information systems applications; In-
formation retrieval.

Keywords

urban representation, transformer, dependency retrieval, geospatial
attention

1 Introduction

In urban forecasting tasks, classical methods usually rely statistical
and machine learning methods that operate on low-dimensional,
hand-engineered features [6, 13, 17, 19, 20, 24]. While effective
in constrained settings, these approaches struggle to model the
complexity of urban systems.

Xiao Huang
xiao.huang2@emory.edu
Emory University
Atlanta, USA

Recent advances in spatial representation learning, remote sens-
ing, and deep neural architectures have introduced a new para-
digm in urban modeling: transforming urban regions into high-
dimensional latent representations to better capture complex urban
dynamics. Such representations are commonly derived from text
embedding [4, 12], spatial representation learning [14, 16, 26] or by
encoding satellite imagery data [10, 23].

High-dimensional urban forecasting applications can be broadly
categorized into two directions. The first utilizes graph-based mod-
eling with spatial feature embeddings, then using Graph Neural
Networks (GNNs) or Graph Attention Networks (GATSs) for pre-
dictions [4, 7, 12, 14, 30]. While effective, these methods depend
heavily on predefined spatial structures and high-quality spatial
data, which limits their flexibility in data-sparse or dynamically
changing environments. The second direction focuses on region-
based methods, which derive high-dimensional representations
directly from satellite imagery or other high-resolution spatial data
[10, 18, 23]. These methods produce compact representations that
preserve built environment features and support downstream tasks.
However, these approaches only utilize local information within
each patch for prediction and lack the capability to incorporate
global urban context [23], which is crucial for tasks requiring holis-
tic understanding.

The limitations and incompatibility of the two paradigms ulti-
mately reflect a structural divergence rooted in whether spatial
dependency is available—either built into the input or entirely ab-
sent. Several studies have explored automated mechanisms for cap-
turing spatial dependencies for high-dimensional representations,
including spatial autocorrelation, proximity, or sparse regression
[8, 11, 15]. However, these approaches remain task-agnostic. To
date, no unified framework exists that systematically integrates the
two modeling paradigms through task-aware dependency modeling
to address their respective limitations.

To address these gaps, we propose a novel, unified and modu-
lar framework for high-dimensional urban forecasting. It consists
of three functional modules: (1) the Urban Region Representation
Module encodes each region into high-dimensional embeddings
and semantic descriptions; (2) the Task-Aware Dependency Re-
trieval Module identifies spatial dependencies among regions by
matching task-specific prompts with semantic descriptions; and (3)
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Retrieved Regions
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