
Slide 1

AI-Driven Flood Inventory Generation from Multi-Source 
Remote Sensing for Reliable Susceptibility Mapping

Armin Moghimi, Ph.D. Department of Geography, K. N. Toosi University 
of Technology; Ludwig-Franzius-Institut, Leibniz University Hannover

8th September 2025

AI-Driven Flood Inventory Generation

from Multi-Source Remote Sensing for

Reliable Susceptibility Mapping

Armin Moghimi, Ph.D. Department of Geography, K. N. Toosi University of 

Technology; Ludwig-Franzius-Institut, Leibniz University Hannover

8th September 2025



Slide 2

Floods: A Major Global Hazard
Why Floods Matter

•🌍 Most frequent climate-related disaster

•📈 Increasing frequency & intensity due to climate change

•💰 Huge economic lsses (billions annually)

•👥 High human impact (displacement, fatalities, livelihoods)
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Risk index score Date 19 March 2019 – 29 April 2019

Location Fars province

Golestan province

Mazandaran province

Khuzestan province

Lorestan province

Ilam province and 20 other 

provinces.

Deaths 77+ deaths, 791 injured,

Property 

damage

•$4.1 billion (2019 USD) About 

1,900 cities and villages 

damaged

•78 roads had been blocked and 

84 bridges in flood-stricken areas 

affected

Source: European Commission. (March 31, 2025). In Statista. Retrieved September 06, 2025, from 

https://www.statista.com/statistics/1306264/countries-most-exposed-to-floods-by-risk-index-score/

Source: https://en.wikipedia.org/wiki/2019_Iran_floods

https://www.mehrnews.com/

https://en.wikipedia.org/wiki/Fars_province
https://en.wikipedia.org/wiki/Golestan_province
https://en.wikipedia.org/wiki/Mazandaran_province
https://en.wikipedia.org/wiki/Khuzestan_province
https://en.wikipedia.org/wiki/Lorestan_province
https://en.wikipedia.org/wiki/Ilam_province
https://en.wikipedia.org/wiki/United_States_dollar
https://en.wikipedia.org/wiki/2019_Iran_floods
https://www.mehrnews.com/
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Floods: Flood Susceptibility Mapping

What is Flood Susceptibility Mapping?

•Identifies areas most likely to experience flooding

•Based on historical flood data + environmental factors

(rainfall, topography, soil, land use)

•Produces probability maps showing high, medium, and low 

susceptibility zones

Why It Matters:

•✅ Supports urban planning and land-use management

•✅ Informs disaster preparedness & emergency response

•✅ Aids in infrastructure protection & insurance planning

•✅ Reduces loss of lives and property through proactive 

action

Key Idea:

Flood susceptibility maps ≠ show when floods occur,

but they do show where floods are more likely to occur.

Flood Inventory
(flood and non-flood 

points)

Susceptibility Model 
(AI/ML,  statistical models, hybrid models)
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probability maps (Very high/high, moderate/low/very low 
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conditioning 

factors (FCFs)
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The Role of Flood Inventory in Susceptibility Mapping

Flood Inventory = Ground Truth

•📍 Collection of flood and non-flood points

•Each point = observed condition (flooded = 1, non-flooded = 0)

•Provides the training data for AI/ML and statistical models

Why It’s Important:

•🧭 Defines the “known reality” that models learn from

•🏗️ Without accurate inventories, susceptibility maps risk being 

unreliable

•🔄 Enables validation of flood susceptibility predictions

•🌍 Critical for scaling models across regions and climates

Traditional Practice:

•Researchers often relied on:

• Sparse ground observations in affected 

areas

• Manual interpretation of satellite images

• Post-disaster survey data

•Limitations: slow, costly, incomplete
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Remote Sensing for Flood Inventory Generation

Sentinel-1 SAR 
images

Sentinel-2 
images

Landsat series 
images

MODIS images

Multi/Bitemporal 
Analysis

and Feature Generation
•Water indices (NDWI, 
MNDWI, etc.)
•SAR backscatter 
difference / coherence
•Topographic features 
(slope, elevation, 
curvature)

Flood 
Detection

Sampling Point Extraction
•Flood points (1)
•Non-flood points (0)

Flood Inventory 
Database

Or/And

Or/And

Or/And
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Multi-Event Integration
Frequency Map
•Combine multiple flood 
events
•Show recurrence per 
pixel
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Traditional Core Processing Method for flood inventory generation from remote 

sensing images: Otsu Thresholding

📊 Otsu Thresholding

•Intensity-based classification (histogram-

driven)

•Finds a global threshold that separates 

pixels into two classes:

• 🌊 Water (flooded)

• ⛰️ Non-water (non-flooded)

•Applied to:

• Water indices (NDWI, MNDWI) from 

optical sensors (Sentinel-2, Landsat)

• SAR backscatter values (Sentinel-1)

•🌐 Often implemented in Google Earth 

Engine (GEE) for large-scale, rapid mapping

•💡 Outcome: binary flood maps (flood vs 

non-flood), widely used in operational and 

academic studies

Otsu-based flood inventory generation using Sentinel-1 

SAR data
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Pre-flood SAR image 
captured by sentinel-1 

Post-flood SAR image 
captured by sentinel-1 

Otsu-based flood map

Study area:

Ahwaz,

Khuzestan, 

Iran

The generated flood inventory mapBest model susceptibility Map

Source: https://doi.org/10.1016/j.jhydrol.2023.129100

https://doi.org/10.1016/j.jhydrol.2023.129100
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The generated flood inventory map

S1C-based historical flood occurrences map generation 
(2020–2023)

Flood susceptibility maps 
generated by AHP-GBM Source: https://doi.org/10.1007/s11069-025-07335-8

https://doi.org/10.1007/s11069-025-07335-8
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Limitations of Otsu-Based and Traditional ML Models for Flood Inventory

Limitation with Traditional Otsu-

Based Approaches
•⚠️ Global Thresholding Problem →

oversimplifies diverse landscapes

•📉 Noise Sensitivity → SAR speckle, 

vegetation, shadows misclassified

Limitations of Traditional ML Models

•🕵️ Training Data Dependence

Results only as good as the inventory 

used.

•📊 Limited Features

Require manual feature extraction for 

better performance.

•🌍 Low Transferability

Models often fail outside the training basin.

Toward automated, 

scalable, and reliable 

flood inventory 

generation

AI-driven methods

!?

They need a

lots of data for

effective

training

Now, we have a lots of bench Mark Remote sensing 

dataset for effective training and inferencing. 

MMFlood Sen1Floods11

SEN12-FLOOD WorldFloods

Some example 

datasets: 

https://ieee-dataport.org/documents/mmflood-multimodal-dataset-flood-delineation-satellite-imagery
https://ieeexplore.ieee.org/document/9150760
https://github.com/ClmRmb/SEN12-FLOOD
https://doi.org/10.1038/s41598-023-47595-7
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AI-Driven Flood Inventory Generation using multisource RS data: Workflow
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AI-Driven Flood Inventory Generation using multisource RS data: Workflow

Source: https://crowdwater.ch/de/start-2/

Source: https://www.coastsnap.com/

Source: https://lufi.uni-hannover.de/de/forschung/forschungsschwerpunkte/hafenmanagement-aestuaringenieurwesen-und-
feldmessungen/riversnap

Source: https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1

Source: JRC Global River Flood Hazard Maps Version 2.1 | Earth Engine Data 
Catalog | Google for Developers

https://crowdwater.ch/de/start-2/
https://crowdwater.ch/de/start-2/
https://www.coastsnap.com/
https://lufi.uni-hannover.de/de/forschung/forschungsschwerpunkte/hafenmanagement-aestuaringenieurwesen-und-feldmessungen/riversnap
https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1
https://developers.google.com/earth-engine/datasets/catalog/JRC_CEMS_GLOFAS_FloodHazard_v2_1?hl=de
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https://doi.org/10.1016/j.jenvman.2025.124972
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https://doi.org/10.1016/j.jenvman.2025.124972
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https://doi.org/10.1016/j.jenvman.2025.124972
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Flood/Non-Flood Point Derivation in the paper

https://doi.org/10.1016/j.jenvman.2025.124972
https://doi.org/10.1016/j.jenvman.2025.124972


Slide 16

Overall process and Results

https://www.sciencedirect.com/science/article/pii/S030147972500948X#bib45
https://doi.org/10.1016/j.jenvman.2025.124972
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Conclusion and Future Work 

Conclusion
•Flood susceptibility mapping depends heavily on flood inventory quality.
•Traditional methods (Otsu, classical ML) are limited by noise sensitivity, weak transferability, and 
oversimplified thresholds.
•AI-driven approaches using deep learning and multi-source data provide more reliable and 
scalable inventories, significantly improving susceptibility model performance.

Future Work
•🌐 Multi-Source Fusion: Integrate SAR, optical, DEM, hydrologic, and citizen science data.
•🔍 Advanced Sampling: Explore adaptive or uncertainty-driven methods for inventory 
refinement.
•🤝 Collaborative Science: Combine global datasets with local knowledge for more inclusive 
flood risk mapping.
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