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Floods: A Major Global Hazard

Why Floods Matter

@ Most frequent climate-related disaster

Increasing frequency & intensity due to climate change
e ® Huge economic Isses (billions annually)

» 8¢ High human impact (displacement, fatalities, livelihoods)
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Source: European Comm|SS|on (March 31, 2025). In Statista. Retrieved September 06, 2025, from
https://www.statista.com/statistics/1306264/countries-most-exposed-to-floods-by-risk-index-score/

Date 19 March 2019 — 29 April 2019
Location Fars province
Golestan province
Mazandaran province
Khuzestan province
Lorestan province
llam province and 20 other
provinces.
Deaths 77+ deaths, 791 injured,
Property *$4.1 billion (2019 USD) About
damage 1,900 cities and villages

damaged

+78 roads had been blocked and
84 bridges in flood-stricken areas
affected

Source: https://en.wikipedia.org/wiki/2019 Iran_floods

https://www.mehrnews.com/
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Floods: Flood Susceptibility Mapping

What is Flood Susceptibility Mapping?

Identifies areas most likely to experience flooding

*Based on historical flood data + environmental factors
(rainfall, topography, soil, land use)

*Produces probability maps showing high, medium, and low
susceptibility zones

Why It Matters:

«[) Supports urban planning and land-use management
-] Informs disaster preparedness & emergency response
(V] Aids in infrastructure protection & insurance planning
*[v] Reduces loss of lives and property through proactive
action

Key Idea:
Flood susceptibility maps # show when floods occur,
but they do show where floods are more likely to occur.
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The Role of Flood Inventory in Susceptibility Mapping

Simple diagram of flood Susceptibility

mapping
Flood
2] conditioning Flood Inventory
8_ factors (FCFs) (flood and non-flood
= (rainfall, DEM, LULC, points)
ee)

o l l
=
[J) Susceptibility Model
-8 (AI/ML, statistical models, hybrid models)
E l
a Flood Susceptibility map
5 probability maps (Very high/high, moderate/low/very low
@) susceptibility)

Flood Inventory = Ground Truth

« @ Collection of flood and non-flood points

*Each point = observed condition (flooded = 1, non-flooded = 0)
*Provides the training data for Al/ML and statistical models

Why It’s Important:
«® Defines the “known reality” that models learn from

« = Without accurate inventories, susceptibility maps risk being
unreliable

-(s) Enables validation of flood susceptibility predictions

@ Critical for scaling models across regions and climates

Traditional Practice:
*Researchers often relied on:
« Sparse ground observations in affected
areas
« Manual interpretation of satellite images
» Post-disaster survey data
Limitations: slow, costly, incomplete
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Remote Sensing for Flood Inventory Generation

Sentinel-1 SAR |

images

Or/And

Sentinel-2
images

Or/And

Landsat series
images

Or/And

MODIS images

Preprocessing Preprocessing

Preprocessing

Preprocessing

Multi/Bitemporal

Analysis
and Feature Generation /IVI lti-Event Int i \
*Water indices (NDWI, Fu I-Even Mn egration
MNDWI, etc.) Flood +Combine multiple flood
*SAR backscatter 4{ . }> OmBbINE MUIpPIE oo
i Detection events
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: *Show recurrence per
*Topographic features

(slope, elevation, \plxel /

curvature)

A 4

Sampling Point Extraction
*Flood points (1)
*Non-flood points (0)

e
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Flood Inventory
Database
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Traditional Core Processing Method for flood inventory generation from remote
sensing images: Otsu Thresholding

Otsu Thresholding Otsu-based flood inventory generation using Sentinel-1

‘Intensity-based classification (histogram- SAR data
driven) %Senting[—l lmages r;.?::
-Finds a global threshold that separates SR, 2! R B e
pixels into two classes: ] | 2| o ,

. @ Water (flooded) Adormated Pre-Processeing \ = E :é | Aummatf‘d .Chzmgc Detection " Water Body Detection

@ Non-water (non-flooded)  apbvositte | (8| (gh [E] \BRESRENE | eiding method
-Applied to: ¢ Bonkencieremonl [~/ 1 |2 e et e

+ Water indices (NDWI, MNDWI) from |+ Temincomecion |2/ 1121 |2 |* femn e SN+ ineacton it

optical sensors (Sentinel-2, Landsat) EE ] ClangeMsp | [ Floodextntmap |

* SAR backscatter values (Sentinel-1) i Z| : | v
- @ Often implemented in Google Earth - 4] :F‘°°“6‘:nfr';‘§;{1“‘ap , [[Vatidation |
Engine (GEE) for large-scale, rapid mapping L

« @ Outcome: binary flood maps (flood vs
non-flood), widely used in operational and
academic studies
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Journal of Hydrology

et _ N Study area:
ELSEVIER journal homapage: www.alsavier.com/locate/jhydro
Ahwaz,
e peee ® Khuzestan
Flood susceptibility mapping using multi-temporal SAR imagery and novel @& ’
integration of nature-inspired algorithms into support vector regression Iran
Soroosh Mehravar °, Seyed Vahid Razavi-Termeh ”, Armin Moghimi =4 Babak Ranjgar*,
Fatemeh Foroughnia ™ , Meisam Amani’ B
Source: https://doi.org/10.1016/j.jhydrol.2023.129100 Altitads ()
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Best model susceptibility Map The generated flood inventory map

The results of the area under the ROC curve (AUROC) related to the flood sus-
ceptibility models.

Models AUROC Standard error Asymptotic 95 % confidence interval
Lower bound Upper bound

SVR-FA 0.806 0.0319 0.741 0.861

SVRIWO 0.802 0.0323 0.737 0.858

SVR-BA 0.793 0.0334 0.727 0.850

SVR 0.774 0.0346 0.705 0.833

P i | Updating the flood inventory using remote sensing }

Mapping and analyzing the flood

using the proposed method

L~

Google Earth Engine

| Flood Conditioning Factors |

Land cover

Soil

Rainfall

Stream power index

Topographic wetness
index

Curvature
Slope
Slope aspect

Distance to stream

Normalized
difference vegetation
index

Altitude

Otsu-based flood map

Post-flood SAR image
captured by sentinel-1

0\ Automatic Flood and
" Non-flood Point Detection

|

+ ] y .
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Flood inventory locations
/ J
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X
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T

| Support Vector Regression (SVR) |
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| BA | wo |[ Fa )
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p \ v 1EE : . RMSEand
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J & |
t | :h’g |
la 2 e
ReliefF l | %g | Model is optimized | :
Algorithm lE g ’
\ 2 \7 = | Building hybrid models z’}
| ~
-~ y T — — — — — — — — — — — --‘/
| | Multicollinearity | : | Flood Susceptibility Map |
Analysis { -
[ svR-BA| [ svRawo | svrFa || svr

Pre-flood SAR image
captured by sentinel-1
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. =i[ ~excporemies | . el g
g2 (1990-2030) ' RF Recommendation
i B2 MIROCS (Pr) ; XGB
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Limitations of Otsu-Based and Traditional ML Models for Flood Inventory

Limitation with Traditional Otsu-

Based Approaches

*/\ Global Thresholding Problem —
oversimplifies diverse landscapes

f&] Noise Sensitivity — SAR speckle,
vegetation, shadows misclassified

Limitations of Traditional ML Models
- £ Training Data Dependence
Results only as good as the inventory
used.

) Limited Features

Require manual feature extraction for
better performance.

@ Low Transferability

Models often fail outside the training basin.

Al-driven methods

Toward automated,
scalable, and reliable
flood inventory 192
generation

They need a
lots of data fo
effective
training

Now, we have a lots of bench Mark Remote sensing
dataset for effective training and inferencing.

MMFlood SeniFloodsii

Some example

datasets:

SEN12-FLOOD WorldFloods
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Single source

Dual source

Al-Driven Flood Inventory Generation using multisource RS data: Workflow

5| Sampling Point Extraction and Flood
Inventory formation

Input —> Deep Learning (DL)-based flood segmentation [—>] Multi-Event Integration Frequency Map

= e o S EE— S S EEE B RS SEE EEE RS SEE EEE RS S BEE EEE SEE BEe B SEe B B e S
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: SAR images
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|
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| Optical images &
|
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Multitemporal Encoder _\]
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I usion

: Block —  Decoder
Preprocessed

I Multitemporal Encoder —T

I Optical images
|
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Al-Driven Flood Inventory Generation using multisource RS data: Workflow

Input

Multitemporal SAR and Optical images

Deep Learning (DL)-based flood segmentation

VGI images in flood events

=] CoastSnap

community beach monitoring

Source: https://www.coastsnap.com/

e oo crowd
water

Source: https://crowdwater.ch/de/start-2/
R L
RiverSnap

machine learning methods to
(O determine hydraulic parameters
Source: https://Iufi.uni-hannover.de/de,

Dataset Availability
2000-02-17T00:00:00Z-2018-12-10T00:00:00Z

Dataset Provider

Cloud to Street (C2S) / Dartmouth Flood Observatory
(DFO)

Earth Engine Snippet
ee.ImageCollection("“GLOBAL_FLOOD_DB/MODIS_EVENT
sv1t) &

Source: https://d google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS V1

Encoder Decoder
DL-based flood segmentation and depth
detection
Encoder Decoder

V.

Multi-Event Integration
Frequency Map

N

Flood hazard map v2 & v2.1

Source: JRC Global River Flood Hazard Maps Version 2.1 | Earth Engine Data

Catalog | Google for Developers

Sampling Point

Extraction and

Flood Inventory
formation



https://crowdwater.ch/de/start-2/
https://crowdwater.ch/de/start-2/
https://www.coastsnap.com/
https://lufi.uni-hannover.de/de/forschung/forschungsschwerpunkte/hafenmanagement-aestuaringenieurwesen-und-feldmessungen/riversnap
https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1
https://developers.google.com/earth-engine/datasets/catalog/JRC_CEMS_GLOFAS_FloodHazard_v2_1?hl=de
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Journal of Environmental Management

I l SEVIER journal homapage: w

Flood Inventory generation using global flood Dataset and transfer leaming
segmentation of Sentinel-1 SAR images

.elsevier.com/locate/jenvman

Flood water segmentation of multitemporal Sentinel 1
Besearch article ..} images using Transfer leaming Global flood dataset v1
Advancing flood risk assessment: Multitemporal SAR-based flood inventory — [&&& | Daia souree
generation using transfer learning and hybrid fuzzy-AHP-machine learning T =
(2000-2018)

for flood susceptibility mapping in the Mahananda River Basin

Multitemporal Sentinel 1

l

Monte Carlo sensitivity analysis Model Explainability
== using SHAP analysis

Chiranjit Singha *©, Satiprasad Sahoo ", Alireza Bahrami Mahtaj‘, Armin Moghimi “ @,
Mario Welzel °, Ajit Govind"

Permanent Water

Flood conditioning parameters (FCPs)

* Department of Agricultral Enginesring, Institute of Agriculiure, Visva-Bharati (A Central University), Sriniketor, Birhhum, 731236, Indie

| Tt i i it
i

i
|
|
|
|
i
|
|
|
|
|
! ==
® International Center for Agricuttural Research in the Dry Areas (ICARDA), 2 Port Said, Victoria Sq. fsmail H-Shacer Building, Moadi, Cairo, 11728, Egype E Elevation pmmm ] 'l ------- B [ ? |
< Prajukti Ressarch Private Limitsd, Baruipur, 743610, West Bengal, India | SRTMDEM — 2
4 Faculty of Geodesy and Geomatics Engineering, ¥ N. Toasi Urdversity of Technology, Tehran, 1996715433, Imn ) (30-Meter) L Slope m ®F xé’g“ gg’]‘::'zww e
* Ladwig Fransius-institute for Hydraudic, Fstwarine and Coastal Engineering, Leibniz University Hannover, Nienburger Sir. 4, 0167, Hannover, Germumy ! = s = |
! Soil Type g T Model Validation =5
! i 9 . y - AUC PERITR
ARTICLE INFOD ABSTRACT || Geological Survey ofIndia  [+—| Geomorphology é LT . st;azore "3"
! ! :) +  FuzzyAHP-RF * Sensitivity 3
Handling editor: Jasan Michael Evans The Mahananda River basin, located in Eastern India, faces escalating flood risks due to ite complex hydrology | ESA WorldCover 2021 |—1 LULC & FuzzyAHP *  FuzzyAHP-XGB + Specificity et
and geomorphology, threatening sociceconomic and environmental stability. This study presents a novel | Multitemporal Sentinel 2 1 _!é Process . F“ZZ}’A}W'GBIV! « NPV = _:;: ‘
Keywords: approach to flood susceptibility (FS) mapping and updates the region’s flood inventory. Multitemporal Sentinel-1 | 2017-2022 T NDVI (=] *  FuzyAHP-avNNet * PPV ZF |4
Fload susceptibility (FS) mapping (51) SAR images (2020-2022) were processed using a U-Net transfer learning model to generate a water body | ‘HyAroRIVERS — . - *  FuzzyAHP-AdaBoost :
FuzzyAHP frequancy map, which was integrated with the Global Flood Dataset (2000-2018) and refined through grid-based | i T Drainage Density \ * FuzyAHR.PLS == -
Machine Learning (ML} R . ) X i - X t | |__HydroSHEDS vector data |, - .
Climate change scenarias (SSP2-4.5 classification to create an updated flood inventory. Eleven genspatial layers, including elevation, slope, soil : ) e I e pliedee iy —C 1
S5F5-E.5) mnisFure_ precipitation, soil type, NDVI, Lan.d_'IJsg Land Cover (LULC), gmmﬂrphol.ogy. vrind 5pged_ drainage i i i Information Gain Future Flood Susceptibility Mapping Future Flood Susceptibility Mapping
SHAP analysis density, and munoff, were used as flood conditioning factors (FCFs) to develop a hybrid FS mapping approach. | : - analysis (S5P2-4.5) (SSPS-5.5)
Transfer learning This approach integrates the Fuzey Analytic Hierarchy Process (FuzzyAHP) with six machine learning (ML) al- | i ) unoff — — —
Mahananda River Basin gorithms to create hybrid models FuezyAHP-RF, FuzzyAHP-XGB, FuzzyAHP-GEM, FumzyAHP-avNNet, | TemaClimate Damset — A
Fload inventary FuzzyAHP-AdaBoost, and FuzzyAHP-PLS. Future flood trends (1990-2030) were projected using CMIPG data | ! e
under S58P2-4.5 and S5P5-8.5 scenarios with MIROCS and EC-Earth3 ensembles. The SHAP algorithm identified 1
LULC, NDVI, and soil type as the mast influentisl FCFs, contributing aver 60 % to flood susceptibility. Results | ; Wind Speed
show that 31.10 % of the basin is highly susceptible to flooding, with the western regions at greatest risk due to | ;
low elevation and high drainage density. Future prajections indicate thar 30.69 % of the area will remain highly | 1 Future FCPs
wulnerable, with a slight increase under S5P5-8.5. Among the models, FuzzyAHP-XGB achieved the highest ! ! Future Scenarios
accuracy (AUC = 0L970), outperforming Fuzzy AHP-GBM (AUC = 0.968) and FuzzyAHP-RF (AUC = 0.965). The § ! Precipitation (1990-2030)
experimental results showed that the proposed approach can provide a spatially well-distributed fload inventory ||  CMIP6 (MIROC6 & EC- { CMIP6 (MIROC6 &
derived from freely available remote sensing (RS) datasets and a robust framework for long-term flood risk i Earth3) : Wind Speed (1990-2030) EC-Earth3) under
assessment using hybrid ML technigues. These findings offer critical insights for improving flood risk manage- | 1 SSP2-4.5 & SSP5-8.5)
ment and mitigation strategies in the Mahananda River hasin. ] ESRILULC database l—‘—-‘ LULC (2030)
— ] Co— e W s W e G| [ W e

Source: https://doi.org/10.1016/j.jenviman.2025.124972
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Global flood dataset vl

(2000-2018)

DEBY

Permanent water >
SRTM DEM Slope
(30-Meter) P

g, 5> Multitemporal Sentinel-1
SAR Images (2020-2022)

Q
(o,
S/

Preprocessing

*  Apply orbit file
*  GRD border noise removal

L ]
¢ Thermal noise removal E
*  Radiometric calibration values | e
¢ Terrain correction
k Data transform to dB /
Vector data of study area >

Spatial-temporal filtering

Speckle filtering

=
=
e
]
" ] g | ™
E: Post processing g >
1
: —l
1
K +  Permanent water . =
1
:} Mask = 2 | mee i
s »| +  Terrain Filter . g | St
1 = Ficed frequency (%) -,
" (Slope >5%) - & i g
:1 \ / 8
" A 4 -
h seece

0

15 30 45 60km

i S—

® Flood node

@ Unassigned node
@® Non-flood node
Flood lfrequenc_v (%)

Water body segmentation using U-Net
transfer learning model

doi.org/10.1016/j.jenviman.2025.124972

Source: https:

Mahananda River T A
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f

3%3 Conv+BN+ReLU

Max Pool

3 DeConv+BN+ReL.U

f

Concatenate

415 N 4 W

——=2""(d)

L s

%% Pretrained Frozen layers “ Trainable layers

Number of Parameters and Training Time per Epoch for considered model.

REEL O Ruzszs- e )

Model Total Parameters Trainable Parameters Non-trainable Parameters Time per Epoch (s)
U-Net 1,945,969 1,943,537 2432 3.56
Transfer U-Net 1,945,969 1,353,377 592,592 1.26

V-Net 18,436,017 18,430,385 5632 6
Attention U-Net 10,161,060 10,153,636 7424 5.9
U-Net++ 8,569,537 8,562,113 7424 4.7

U-Net 3+ 1,972,513 1,968,865 3648 3.6

Performance comparison of considered segmentation models in water body
detection form S1 SAR images (red: best performance, blue: second best

performance).

Model loU Recall Accuracy Precision Fl-score

U-Net 0.898 0.932 0.979 0.961 0.946

V-Net 0.888 0.902 0.978 0.983 0.941

Attention U-Net 0.906 0.929 0.981 0.973 0.951

e 0.877 0.936 0.974 0.932 0.934 Fig. 7. Water bodies detected by Transfer U-Net from S1 d post-flood on (a) 2020/06/27, (b) 2020/07/27, (c) 2020/08/31, (d) 2020/09/24, ()
ig. 7. Water es detect y Transfer U-Net from S1 images acquired post-flood on (a /! 3 /07/27, (c /31, /! , (e

U-Net 3+ 0.902 0.962 0.980 0.935 0.949 2021/07/28, (f) 2021/08/26, (g) 2021/09/26, (h) 2021/10/25, (i) 2022/08/28, (j) 2022/00/26, (k) 2022/10/27, and (1) frequency water body map generated by

Transfer U-Net 0.914 0.960 0.982 0.949 0.954 stacking all detected water bodies from SAR images with the Global Flood Dataset v1 (2000-2018), superimposed on a SAR image. The blue is water body.

|
Source: https://doi.org/10.1016/j.jenvinan.2025.124972 S“de 14
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Flood/Non-Flood Point Derivation in the paper

Step 1: Flood Frequency from Sentinel-1 SAR

N
1 8
Ffreq - E JZ]FJ

¢ N, number of Sentinel-1 images

* Fj: flood map from the 7 SAR acquisition

s Qutput: flood frequency map (probability of flooding per pixel)

Step 2: Integration with Historical Database (GFD v1)

U Ffreq + Forp

Fi freq — 9

» Combine Sentinel-1 frequency map with Global Flood Database (2000-2018)

* Qutput: updated flood frequency map F| éiq

Step 3: Grid-Based Sampling with k-NN
At each grid node g € G:

1 k
Flg) =3 3 Fil

i=1

* Use k nearest neighbors (k = 25) via KD-tree

» Compute average flood frequency of neighbors

gi)

Source: https:

Step 4: Classification Rule

( Flood, F(g) > 0.80

Frefined(g) = { Non-Flood, F(g) < 0.10
Unassigned, 0.10 < F(g) < 0.80

s Qutput: refined flood inventory (flood & non-flood points)

@ Floodnode
@ Unassigned node
® Non-flood node
Flood frequency (%)

0.18/0.03| O

0.47| [0.11/0.05/0.08
g=0848 g=0517 g=0.06

“Flood” “Unassigned”  “Non-Flood”

Example of proposed grid-based sampling approach for generating
ﬂOOd and non—ﬂood points When k:9, Source: https://doi.org/10.1016/j.jenvinan.2025.124972
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Overall process and Results
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Source: https:

doi.org/10.1016 /j.jenviman.2025.124972
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Comparative performance analysis of the Fuzzy AHP-XGB
(proposed method) and the FuzzyAHP-XGB (Mehravar et
al., 2023) approach.
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Conclusion and Future Work

Conclusion

*Flood susceptibility mapping depends heavily on flood inventory quality.

*Traditional methods (Otsu, classical ML) are limited by noise sensitivity, weak transferability, and
oversimplified thresholds.

*Al-driven approaches using deep learning and multi-source data provide more reliable and
scalable inventories, significantly improving susceptibility model performance.

Future Work

« @ Multi-Source Fusion: Integrate SAR, optical, DEM, hydrologic, and citizen science data.
- @ Advanced Sampling: Explore adaptive or uncertainty-driven methods for inventory
refinement.

*%> Collaborative Science: Combine global datasets with local knowledge for more inclusive
flood risk mapping.
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Thank you !

If you have questions or would like to collaborate, feel free to contact me:
:Moghimi.armin@gmail.com
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