
Flood Mapping using Dual Polarization Sentinel-1

Synthetic Aperture Radar (SAR) Data



Motivation and Challenges:

▪ Floods are among the most frequent and destructive natural

disasters.

▪ Climate change, urbanization, and population growth

increase risks.

▪ Accurate and timely flood maps are crucial for emergency

response and mitigation.

▪ Synthetic Aperture Radar (SAR) from Sentinel-1 is widely

used due to all-weather, day/night capability.

▪ Challenges: Speckle noise and complex backscatter patterns

in SAR make segmentation task challenging.



1. All-Weather, Day and Night Capability

- SAR uses microwave signals, not visible light.

- Works under cloud cover, heavy rain, and at night → crucial during floods when optical satellites fail.

2. Water Detection Advantage

- Smooth water surfaces reflect radar signals away from the satellite → appear as dark areas.

- Land/urban/vegetation scatter signals back → appear bright.

- Creates strong land–water contrast for flood detection.

3. High Spatial and Temporal Coverage

- Sentinel-1 revisits every 6-12 days globally.

- Wide swath (~250 km) allows large-scale flood mapping.

Why Dual Polarization Sentinel-1 SAR Data?



4. Independence from Sunlight & Atmosphere

- Unlike optical imagery, SAR penetrates clouds, haze, and smoke.

- Ensures reliable monitoring during disaster conditions.

5. Compatibility with Advanced Models

- Dual polarization (VV, VH) enhances classification.

- Combined with deep learning, SAR supports accurate flood 

segmentation despite speckle noise.

Why Dual Polarization Sentinel-1 SAR Data?



Limitations of Traditional Approaches

- Thresholding / region growing / Random Forest require manual feature engineering.

- Struggle in urban/vegetated areas with complex backscatter.

- Ignore spatial context → rely only on pixel-level values.

Strength of Deep Learning

- Learns hierarchical spatial-spectral features directly from SAR data.

- Captures both local textures (via CNNs) and global context (via Vision Transformers).

- Handles speckle noise and complex patterns better than rule-based or shallow models



Residual wave vision U-Net





The adopted Phase Aware Token Mixing (PATM) is a lightweight token- and channel-mixing module as an

alternative to conventional self-attentions by dividing features into height, width, and channel branches.

The PATM applies phase-aware modulation (cosine/sine) to the token-mixing branches for directional

sensitivity (performing spatial mixing) and a channel-mixing module (performing channel mixing). SAR

backscatter is naturally a complex signal.

𝑡 ≅ |𝑡| ∙ (cos 𝜃 + 𝑖 sin 𝜃)

|𝑡| amplitude = SAR feature intensity (VV, VH, or derived features)

𝜃 learnable phase term → gives positional/directional modulation

Concatenating cos/sin parts = representing the complex feature in real form

Residual wave vision U-Net



PATM uses cos θ and sin θ to model features as complex numbers (real + imaginary). Amplitude comes from
SAR intensity, phase from modulation. This allows wave-like, direction-aware token mixing directly aligned
with the physics of SAR signals.

In the token-mixing branches, the SAR backscatter intensity acts as amplitude (VV, VH, and derived
polarimetric features), while phase-aware modulation (cosine/sine of learnable θ) provides the phase
component capturing positional/directional variation in the SAR signals, enabling directional sensitivity
and more accurate spatial mixing of flood patterns.

The Wave-Vision block can be regarded as a mixture-of-experts module consisting of two phase-aware
token-mixing branches (height and width), one channel-mixing branch based on Vision MLPs, and an
additional channel-mixing component implemented with standard MLPs.

Residual wave vision U-Net



Experimental Setup

Data: 542 Sentinel-1 SAR “chips” (dual polarization VV, VH) from

multiple global flood events (e.g., United States, Paraguay, India, and

Slovakia).

- Derived polarization features (VV+VH, VH-VV, VV*VH, etc.).

- Input size: 256×256×8.

- Evaluation metrics: Accuracy, Precision, Recall, F1-score, Dice, AUC



The developed WVResU-Net outperformed all baseline models, including 

Swin U-Net, U-Net+++, Attention U-Net, R2U-Net, ResU-Net, TransU-Net, and TransU-Net++ 

(ours, was tested for deforestation mapping).

- Overall Accuracy: 96.2%

- Precision: 92.97%

- Recall: 69.67%

- F1-score: 82.03%

- Dice coefficient: 0.7345

- AUC: 0.845



Visualization and Insights

Segmentation maps showed:

- WVResU-Net best distinguishes flooded vs. non-

flooded areas compared to other models.

- Lower over/under-estimation of floods compared to 

other models.

- Feature maps reveal effective focus on flooded regions.



Sentinel-1 polarization data

of VV

Flood masks

Results of the developed

WVResU-Net



Feature maps derived from the developed segmentation

algorithm of the WVResU-Net for three randomly selected

areas (a1-a3) SAR polarization data of 𝑉𝑉, (b1-b3) flood

masks, (c1-c3) derived feature map from last vision network

and (d1-d3) last convolutional layer, respectively.



Conclusion

- WVResU-Net is a robust, accurate, and efficient flood mapping architecture.

- Integrates wave-based Vision MLPs + residual learning.

- Adaptively learn flood patterns from dual-pol SAR data.

- Significantly outperforms CNN and ViT architectures on Sentinel-1 SAR data.

- Demonstrated strong generalization on global Sentinel-1 flood events with limited labeled data.

- Push beyond CNNs and ViTs by combining their strengths.

Paper: https://www.sciencedirect.com/science/article/pii/S1569843224000165

Codes: https://github.com/aj1365/RWVUNet/tree/main

https://www.sciencedirect.com/science/article/pii/S1569843224000165
https://github.com/aj1365/RWVUNet/tree/main


Deforestation Mapping using Sentinel-2 Satellite Imagery



Motivation and Challenges:

Deforestation is a major driver of climate change - especially in tropical 

biomes like the Amazon Rainforest and Atlantic Forest.

Monitoring forest loss is critical for biodiversity conservation, carbon 

capture, and climate stabilization.

Remote sensing with Sentinel-2 imagery provides high-resolution, 

multi-spectral data ideal for large-scale forest monitoring.

Deep learning models (CNNs, U-Net, Transformers) have advanced forest 

mapping but face challenges:

- CNNs struggle with long-range dependencies.

- Vision Transformers (ViTs) need large datasets and high compute 

power.



1. High Spatial Resolution

- 10-20 m resolution captures detailed patterns of deforestation and small-scale clearings.

2. Rich Spectral Information

- 13 spectral bands (visible, NIR, SWIR) allow monitoring of vegetation health, canopy structure, and soil-water contrasts.

- The NIR band is particularly useful for forest monitoring and biomass estimation.

3. High Temporal Frequency

- 5-day revisit time ensures frequent monitoring - essential for tracking rapid forest changes.

Why Sentinel-2 Data?



4. Free and Open Access

- Global coverage → scalable monitoring for large regions like the Amazon and Atlantic Forests.

5. Proven Success in Deforestation Monitoring

- Widely used in forest loss detection, vegetation indices (NDVI, EVI), and environmental monitoring.

- Provides the reliability and consistency needed for training deep learning models.

Why Sentinel-2 Data?



TransU-Net++





TransU-Net++:

An enhanced segmentation architecture that integrates:

- Heterogeneous Kernel Convolution (HetConv): combines point-wise and depth-wise convs for efficient multi-

scale feature extraction.

- U-Net backbone: encoder–decoder structure with skip connections.

- Attention Gates (AGs): highlighting relevant spatial regions, reducing false positives.

- Vision Transformers (ViTs): capturing long-range dependencies and global contextual information.



Key Contributions:

- Introduced TransU-Net++, combining HetConv, AGs, and ViTs for deforestation mapping.

- Demonstrated significant improvements over state-of-the-art models (e.g., U-Net, U-Net+++, Attention U-Net, 

Swin U-Net, ResU-Net).

- Showed excellent generalization across forest biomes (Amazon → Atlantic).



Experimental Setup

Data: Sentinel-2 satellite imagery via SentinelHub.

Regions: Amazon Rainforest and Atlantic Forest.

Datasets:

- Amazon (3-band RGB)

- Amazon (4-band RGB + NIR)

- Atlantic Forest (4-band RGB + NIR)

- Evaluation metrics: OA, F1-score, Precision, Recall, AUC



Amazon 3-band dataset:

- TransU-Net++: OA = 91.96%, F1 = 91.48%

- Outperformed TransU-Net by ~3–6% in accuracy, F1, and precision.

Amazon 4-band dataset:

- TransU-Net++: OA = 97.2%, F1 = 97.18%

- Improved baseline TransU-Net by ~3–7%.

Atlantic 4-band dataset:

- TransU-Net++: OA = 93.97%, Recall = 93.96%

- Enhanced TransU-Net by ~4–16%.

Spatial transferability (Amazon → Atlantic test):

- TransU-Net++ maintains higher generalization with OA = 88.21%, best among tested models.

AUC (all datasets): TransU-Net++ consistently achieved the highest values (e.g., 0.972 for 4-band 

Amazon).





Conclusion

- TransU-Net++ is a powerful, efficient architecture for deforestation mapping using Sentinel-2 data.

- Outperforms both CNN-based and Transformer-based segmentation models.

- Provides excellent spatial transferability, making it suitable for large-scale, real-world forest monitoring.

- The developed architecture has potential applications beyond deforestation, e.g., Flood mapping.

Paper: https://www.sciencedirect.com/science/article/pii/S1569843223001541

Code: https://github.com/aj1365/TransUNetplus2

https://www.sciencedirect.com/science/article/pii/S1569843223001541
https://www.sciencedirect.com/science/article/pii/S1569843223001541
https://github.com/aj1365/TransUNetplus2
https://github.com/aj1365/TransUNetplus2
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